陈丹琦计算机科学博士论文成“爆款文章”
很少有人的博士论文能够成为「爆款文章」,但陈丹琦做到了。这位近日从斯坦福毕业的计算机科学博士引发了人们的广泛关注。据斯坦福大学图书馆介绍,她长达 156 页的毕业论文《Neural Reading Comprehension and Beyond》上传仅四天就获得了上千次的阅读量,成为了斯坦福大学近十年来最热门的毕业论文之一。
斯坦福大学还因此对陈丹琦进行了一次简单采访。
陈丹琦激动人心的研究迅速在社交网络和其他专注机器学习的新闻网站上传播。她的指导老师——斯坦福 AI 实验室负责人、人工智能领域著名学者、斯坦福大学语言学和计算机科学教授克里斯托弗·曼宁(Christopher Manning)在采访中表示:「陈丹琦是使用神经网络方法解决自然语言理解问题方面的先驱。她简单、干净、高成功率的模型吸引了众人的目光……她的这篇毕业论文主要研究神经网络阅读理解和问答,这些新兴技术正在带来更好的信息访问方式——它可以让计算机系统可以真正回答你的实际问题,而不是简单地返回文档搜索结果。」
陈丹琦目前正在访问 Facebook 人工智能研究院 Facebook AI Research 和华盛顿大学,在今年秋季,她即将前往普林斯顿大学计算机科学系担任助理教授。
在毕业于斯坦福大学之前,陈丹琦于 2012 年毕业于清华学堂计算机科学实验班(姚班)。值得一提的是,她在高中(长沙市雅礼中学)参加信息学国家队集训期间提出了 cdq 分治算法,用于处理一类分治问题;在高中期间她还发明了插头 DP,主要用于解决数据规模小的棋盘模型路径问题。大牛果然在高中期间就已经「起飞」了。
陈丹琦获得的荣誉和参与的研究还有很多。2010 年,她获得了 ACM ICPC 国际大学生程序设计竞赛全球总决赛银牌。在斯坦福期间,她在 2014 年发表的论文《A Fast and Accurate Dependency Parser using Neural Networks》堪称深度学习依存分析方法的「开山之作」,她和曼宁教授提出的方法在保持精度的前提下,将解析速度提高了 60 倍。
热门的博士毕业论文
这篇毕业论文名为《Neural Reading Comprehension and Beyond》,描述了她在博士期间的三个重要研究,以解决「人工智能中最难以捉摸和长期存在的挑战之一」:如何让机器学会理解人类语言。让我们看看她的毕业论文究竟说了什么。
论文链接:https://stacks.stanford.edu/file/druid:gd576xb1833/thesis-augmented.pdf
摘要
教机器学会理解人类语言文本是人工智能领域最困难的长期挑战之一。本论文致力于解决阅读理解问题,即如何构建一个计算机系统来阅读一段文本并回答理解问题。一方面,我们认为阅读理解是衡量计算机系统理解人类语言程度的重要任务。另一方面,如果我们可以构建高性能的阅读理解系统,那么这些系统就会成为问答、对话系统等应用的关键技术。
本论文聚焦于神经阅读理解,这是一类构建在深度神经网络之上的阅读理解模型。与基于特征的手工传统模型相比,这些端到端的神经模型已被证明在学习丰富的语言现象方面更加有效,在所有现有阅读理解基准测试中都有大幅度的提高。
本论文包含两个部分。第一部分旨在概括神经阅读理解的本质并展示我们在构建高效神经阅读理解模型方面所做的工作。更重要的是了解神经阅读理解模型实际上学习了什么,以及解决当前任务需要怎样的语言理解深度。我们还总结了该领域的当前进展并讨论了未来的发展方向以及一些待解决的问题。
第二部分将探讨如何基于神经阅读理解的当前成果构建实际应用。我们开拓了两个研究方向:1)我们如何将信息检索技术与神经阅读理解相结合,来解决大型开放域问答问题;2)我们如何从当前基于跨距的(span-based)单轮(single-turn)阅读理解模型构建对话问答系统。我们在 DRQA 和 COQA 项目中实现了这些想法,证明了这些方法的有效性。我们相信,这些技术对于未来的语言技术将非常有帮助。
动机
让机器学会理解人类语言文本是人工智能领域最难的长期挑战之一。在开始做这件事之前,我们必须要知道理解人类语言意味着什么?图 1.1 展示了 MCTEST 数据集(Richardson et al., 2013)中的一个儿童故事,只有简单的词汇和语法。为了处理这样一段文字,NLP 社区花费了数十年的精力来解决各种不同的文本理解任务,包括:
a)词性标注。它要求机器理解这些东西:如在第一个句子「Alyssa got to the beach after a long trip」中,Alyssa 是专有名词,beach 和 trip 是普通名词,got 是动词的过去式,long 是形容词,after 是介词。
b)命名实体识别。机器要能够理解 Alyssa、Ellen、Kristen 是人名,Charlotte、Atlanta、Miami 是地名。
c)句法分析。为了理解每句话的含义,机器需要理解单词之间的关系,或句法(语法)结构。还是以第一句话为例,机器要能够理解 Alyssa 是主语,beach 是动词 got 的宾语,而 after a long trip 是介词短语,描述了和动词的时间关系。
d)共指消解(coreference resolution)此外,机器甚至还要理解句子之间的相互作用。例如,句子「She's now in Miami」中的 she 指的是第一句话中提到的 Alyssa,而第六行中的「The girls」指的是前面提到的 Alyssa、Ellen、Kristen 和 Rachel。
是否有全面的评估方法来测试所有这些方面并探索更深层次的理解呢?我们认为阅读理解任务(根据一段文字回答理解问题)就是一个合适又重要的方法。正如我们会用阅读理解来测试人们对一段文本的理解程度,我们认为它同样能够用来测试计算机系统对人类语言的理解程度。
我们可以看看基于相同段落(图 1.1)提出的一些阅读理解问题:
a)要回答第一个问题「What city is Alyssa in?」机器要找到句子「She's now in Miami」并解决「She 指的是 Alyssa」这个共指消解问题,最后再给出正确答案「Miami」。
b)对于第二个问题「What did Alyssa eat at the restaurant?」,机器首先要找到句子:「The restaurant had a special on catfish.」和「Alyssa enjoyed the restaurant's special.」,然后理解第二个句子中 Alyssa 吃的 special 就是第一个句子中的 special。而第一个句子中 special 提到的是 catfish,所以最终正确答案是 catfish。
c)最后一个问题比较有难度。为了正确回答该问题,机器要找出该段落中提到的所有人名及其之间的关系,然后进行算术推理(arithmetic reasoning),最终给出答案「3」。
可以看到,计算机系统要了解文本的各个方面才能正确回答这些问题。因为问题可以被设计为询问那些我们关心的方面,阅读理解应该是用来评估语言理解程度的最合适任务。这也是本文的中心主题。
在本文中,我们研究了这样一个阅读理解问题:我们该如何构建计算机系统来阅读文章并回答这些理解问题?尤其是,我们重点关注神经阅读理解——一种用深度神经网络构建的阅读理解模型,该模型被证明比基于特征的非神经模型更有效。
阅读理解领域历史悠久。早在 20 世纪 70 年代,研究人员就已经认识到它是测试计算机程序语言理解能力的重要方法 (Lehnert, 1977)。但是,它却被忽视了数十年,直到最近才获得了大量关注并取得了快速的进展(如图 2.1 所示),包括我们将在本文详述的工作。阅读理解近期取得的成功可以归功于两方面:
从(文章、问题、答案)三个方面创建的大规模监督数据集;
神经阅读理解模型的发展。
图 1.2:谷歌上的搜索结果。它不仅返回了搜索文档列表,还给出了文档中更精确的答案。
本文涵盖了当代神经阅读理解的本质:问题的形式,这些系统的组成部分和关键成分,以及对当前神经阅读理解系统优势和弊端的理解。
本文的第二个中心主题是,我们坚信,如果可以构建高性能的阅读理解系统,那这些系统将是建立诸如问答和对话系统等应用的关键技术。事实上,这些语言技术已经与我们的日常生活息息相关了。例如,我们在谷歌上搜索「有多少人在斯坦福大学工作?」(图 1.2),谷歌将不仅返回文档列表,还会阅读这些网页文档并突出显示最可靠的答案,并将它们展示在搜索结果的顶部。这正是阅读理解可以帮助我们的地方,使搜索引擎变得更加智能。而且,随着数字个人助理(如 Alexa、Siri、谷歌助手或者 Cortana)的发展,越来越多的用户通过对话和询问信息问题来使用这些设备。我们相信,构建能够阅读和理解文本的机器也将大大提升这些个人助理的能力。
因此,如何根据神经阅读理解近期取得的成功来创建实际应用程序也是我们感兴趣的一方面。我们探索了两个将神经阅读理解作为关键组成部分的研究方向:
开放域问答结合了来自信息检索与阅读理解的挑战,旨在回答来自网络或大型百科全书(如维基百科)的一般性问题。
对话式问答结合了来自对话和阅读理解的挑战,解决了一段文字中的多轮问答问题,比如用户如何与智能体互动对话。图 1.3 展示了来自 COQA 数据集 (Reddy et al., 2019) 的一个示例。在该例子中,一个人可以基于 CNN 文章内容提出一系列相互关联的问题。
图 2.2:论文整理了神经阅读理解中数据集(黑色)和模型(蓝色)的最新重要进展。在这个表中,除 BERT (Devlin et al., 2018) 外,以相应论文的发表日期排序。
六年博士心路历程
在博士论文中,陈丹琦也介绍了自己博士期间的学习经历,感谢了在前进过程中给予了她极大帮助的一批人,包括父母、老师、爱人、朋友。机器之心编译介绍了致谢中的部分内容,让我们一窥优秀的人砥砺前行的历程:
对于我来说,在斯坦福的六年是一段难忘的宝贵经历。2012 年刚开始读博的时候,我甚至都不能说出流利的英语(按照要求,我要在斯坦福修 5 门英语课程),对这个国家也知之甚少,甚至从未听说过「自然语言处理」这一概念。不可思议的是,在过去的几年里我竟然一直在做语言方面的研究,训练计算机系统理解人类语言(多数情况下是英语),我自己也在学习用英语进行沟通、写作。同时,2012 年也是深度神经网络开始起飞并主导几乎所有我们今天看到的人工智能应用的一年。我从一开始就见证了人工智能的快速发展,并为即将成为这一浪潮的一份子而感到兴奋(有时是恐慌)。如果没有那么多人的帮助和支持,我也不可能走到今天。我由衷地感谢他们。
首先要感谢的是我的导师克里斯托弗·曼宁。我刚来斯坦福的时候还不知道 Chris。直到和他一起工作了几年、学了 NLP 之后,我才意识到自己何其荣幸,能够和这一领域如此杰出的人才共事。他对这一领域总是充满洞察力,而且非常注重细节,还能很好地理解问题的本质。更重要的是,Chris 是一个非常善良、体贴、乐于助人的导师。有师如此,别无他求。他就像我的一位老友(如果他不介意我这么说的话),我可以在他面前畅所欲言。他一直对我抱有信心,即使有时候我自己都没有自信。我一直都会对他抱有感激,甚至现在已经开始想念他了。
除了 Chris,我还想感谢 Dan Jurafsky 和 Percy Liang——斯坦福 NLP Group 的另外两位杰出人才————他们是我论文委员会的成员,在我的博士学习期间给予了我很多指导和帮助。Dan 是一位非常有魅力、热情、博学的人,每次和他交谈之后我都感觉自己的激情被点燃了。Percy 是一位超人,是所有 NLP 博士生的榜样(至少是我的榜样)。我无法理解一个人怎么可以同时完成那么多工作,本论文的很大一部分都是以他的研究为基础进行的。感谢 Chris、Dan 和 Percy 创建了斯坦福 NLP Group,这是我在斯坦福的家,我很荣幸成为这个大家庭的一员。
此外,Luke Zettlemoyer 成为我的论文委员会成员也让我感到万分荣幸。本论文呈现的工作与他的研究密切相关,我从他的论文中学到了很多东西。我期待在不远的将来与他一起共事。
读博期间,我在微软研究院和 Facebook AI Research 获得了两份很棒的实习经历。感谢 Kristina Toutanova、Antoine Bordes 和 Jason Weston 在实习期间给予我的指导。我在 Facebook 的实习项目最终给了我参与 DRQA 项目的契机,也成为了本论文的一部分。感谢微软和 Facebook 给予我奖学金。
我要感谢我的父母 Zhi Chen 和 Hongmei Wang。和这一代大多数中国学生一样,我是家里的独生子女。我和父母的关系非常亲密,即使我们之间有着十几个小时的时差而我每年只能挤出 2-3 周的时间来陪他们。是他们塑造了今天的我,廿载深恩,无以为报,只希望我目前所取得的一切能够让他们感到一丝骄傲和自豪吧。
最后,在这里我要感谢俞华程对我的爱与支持(我们在这篇博士毕业论文提交之前 4 个月结婚了)。我在 15 岁时遇见了华程,从那时起我们一起经历了几乎所有的事情:从高中的编程竞赛到清华大学美好的大学时光,然后又在 2012 年共同进入斯坦福大学攻读计算机科学博士学位。在过去的十年里,他不仅是我的伴侣、我的同学、我最好的朋友,也是我最钦佩的人,因为他时刻保持谦虚、聪慧、专注与努力。没有他,我就不会来到斯坦福。没有他,我也不会获得普林斯顿的职位。感谢他为我所做的一切。
相关阅读
精彩推荐
阅读排行
相关词
- 美国社交电商再起波澜:TikTok商城开张,Meta却要闭门做生|今日快看
- 世界快资讯:上海再保险“国际板”正式启动
- 特别好评RPG游戏《恐怖的世界》 完整版10月19日上线|环球精选
- 易会满:持续加大对伪私募、地方交易场所等重点领域风险的整治
- 十元店重回巅峰:新穷人与日本1990s
- 每日快报!教育股震荡走低 国新文化跌超8% 荣信文化跌逾7%
- 全球快讯:央行潘功胜:人民币债券具有良好的投资组合分散化价值
- 国产大飞机开启常态化商业运行:C919带动产业链一起飞 市场规模有望达万亿元量级
- U盘安装系统时蓝屏怎么解决 全球头条
- ROG蓝屏后该采取什么解决方法来重启 世界快报
- 中国地震局:国家地震烈度速报与预警工程已完成主体建设任务 焦点讯息
- win10启动就蓝屏是怎么回事 全球热点
- 环球头条:华硕笔记本acpi蓝屏该如何解决
- 世界最资讯丨打击违规销售作弊器材行为 海南省市场监管部门多措并举为高考中考保驾护航
- 每日热议!永劫无间蓝屏死机应该如何处理
- KMODE蓝屏出现应该如何处理 全球观热点
- 携程集团发布2023年第一季度财报
- 甘肃省华亭市东华镇市场监管所开展农村夏季食品安全专项检查_环球热资讯
- 深圳市市场监管局总部经济审批服务“全市通办”正式落地
- 解码开化(一) 文旅产业:从“高看一眼”“棋高一招”到“焕然一新”
- 第五届京津冀石墨烯大会在北京房山举办,加速三地产业链深度融合
- 高考期间海南天气如何?未来两天多云有雷阵雨 焦点速读
- 别被“蚊蝇通杀”迷了眼
- 啥是海洋?直播带你一起看 天天快看点
- 内罗毕:低碳和电动交通载具展 天天观速讯
- 环球播报:斯诺克新星赵心童为涉赌遭禁赛道歉
- 《沙石镇时光》:1.0版本发售日期公布!通过“塑造你的未来”预告片为前方的秘密和危险做好准备 世界独家
- 关注眼健康亟须全社会行动起来
- 哈利波特魔法觉醒怎么尊享眉色 尊享眉色方法攻略 环球速看
- 甘肃省华亭市市场监管局多举措保障中高考期间食品安全 环球新动态
- 第19届深圳文博会人气旺 每日快报
- 甘肃省嘉峪关市市场监管局镜铁分局全力保障高考期间食品和特种设备安全
- 河北沙河:太行古村落焕发新活力_天天快播
- 世界百事通!晋陕峡谷遇奇石
- “共建首都跨境电商新生态”系列活动在京启动 每日热门
- 环球看热讯:汉字工坊上班不带饭怎么过 找出9个公司吃的答案分享
- 甘肃省张掖市新墩市场监管所“三力齐发”加强中高考期间特种设备安全保障_环球热推荐
- 快消息!小心,这种眼疾易盯上上班族
- 眼药水怎样使用才正确
- 当前讯息:机器人:公司基本实现了35kg以下新款机器人减速器的国产化替代
- 华菱钢铁:钢材产品在新能源新材料领域需求前景将持续向好-天天通讯
- 今早发布!雷雨!_天天即时
- 全球快报:云顶之弈s9暗影岛格温阵容攻略 s9赛季暗影岛格温阵容搭配
- 江苏“智造”夯牢实体经济“家底”
- 加拿大野火烟尘飘至美国 部分地区被烟尘笼罩
- 【环球时快讯】文字玩出花无法原谅怎么过 无法原谅十二处细思极恐在哪
- 环球快播:百亿授信!民生银行与协鑫集团达成全面战略合作
- 前5月外贸保持稳定增长 制造业转型升级塑造出口新动能
- 简讯:江苏油田页岩油累产突破4万吨
- 让城市成为“开放的艺术馆”(金台随笔) 视点
- 易会满:适时出台资本市场进一步支持高水平自立自强的政策措施 全球报道
- 【全球聚看点】河南麦收进度过八成 夏播已完成近五成
- 今起,在锡启幕!
- 两大国际组织上调中国2023年经济增长预期
- 仲景食品:公司产品以国内销售为主 出口业务占比较小-每日速看
- 天天速递!U盘装系统进入PE蓝屏该采取什么解决方法
- 充满算计!日美澳在南太铺光缆,日媒炒“抗衡中国影响力” 焦点热门
- 重点聚焦!力箭一号火箭的专属发射工位长什么样?
- 袁明辉:拍摄下来记录下来用自然摄影留住那些美好
- 扫码支付已在国内迅速发展普及 刷掌支付是否还有市场前景
- “去风险”成脱钩新马甲
- 环球微资讯!360qpesv.sys导致蓝屏该采取什么解决方法
- 【新要闻】北海市海城区地角街道辖区率先完成第二季度食品安全“两个责任”包保工作
- 国家开发银行前5个月发放交通领域贷款2687亿元
- 当前视点!带火原料药企,马斯克加持的“减肥神药”又火了
- 什么是股份制企业?股份制企业和私营企业的区别有哪些?
- 怎么才能正确安装python39.dll
- 全球连线|对两国合作机遇充满期待——洪都拉斯各界热议中国驻洪使馆开馆
- 兰州新区召开第二季度落实食品安全“两个责任”推进会议
- 民泰银行绍兴分行创新产品助共富系列① | 动产融资业务,为民播下“共富”希望-世界实时
- 【世界快播报】我国外贸连续4个月保持正增长
- 偷渡罪一般判多少年?偷渡人员怎么正规回国?
- 吉利雷达以“真乘用化”撬动市场,5月销售1016台创历史新高 焦点资讯
- 故意伤害致人死亡如何处罚?故意伤害致死赔偿多少?
- “6·6”全国爱眼日公益讲座在京举办
- 上古诸神:卡牌对战官网在哪下载 最新官方下载安装地址 环球热推荐
- 天天头条:电脑中缺失alrsvc.dll文件应该怎么处理
- 赡养费标准是什么?不给赡养费最严重的后果有哪些?
- 只允许跟院方合作民营救护车辆进入?医院回应
- 涉案金额959万元!海口曝光9家定点医疗机构
- 世界快播:如何解决电脑端丢失rasmans.dll提示问题
- 微资讯!江西省新余市市场监管局:强化建材质量监管 守牢质量安全防线
- 【快播报】警惕“负首付”骗贷
- 财产税有哪些税种?所得税和财产税的区别有哪些?
- 高考第二天部分地区已公布查分时间 胜利在望,加油少年!|全球快看点
- 青海省海西州四项措施为“中高考”保驾护航_每日看点
- 嫖娼拘留多少天?初次涉黄拘留几天?
- 青海省市场监管局发布中高考期间食品安全消费提示 天天热门
- 浙江金华婺城区:天然富硒,“硒”望之旅
- mtfutils.dll缺失如何恢复
- 忘了车限号开了一天罚多少钱?郑州限行免罚有几次机会?
- 焦点快播:网红化妆大师官网在哪下载 最新官方下载安装地址
- 动态:量子密钥分发攻防研究获重要进展
- 什么是违法所得?违法所得和非法财物的区别有哪些?
- 仙迹之九州神剑官网在哪下载 最新官方下载安装地址|今热点
- 工程预付款是怎么规定的?工程预付款为什么要扣回?
- 种一颗牙便宜多少钱?海南打出种植牙降价“组合拳”
- 劳动合同法第38条是什么内容?公司不辞退故意调岗怎么赔偿?
- 无证驾驶怎么处罚?无证驾驶会被马上拘留吗?
- 当前时讯:生存冒险游戏《血清》新预告 拥有4人合作模式
- 天天观热点:岭南街道构建“一网二联三队伍”服务模式,为社区长者健康保驾护航
- 通信业全力保障高考|莘莘学子逐梦未来 通信业全力护航
- 焦点观察:华为品质宽带智能运维系统荣获CAICT光接入网L3.5等级认证
- 青海省启动“企业商业秘密保护能力提升服务月”活动-天天速看
- 黑龙江省北安市市场监管局着力打造“帮您办”服务品牌|动态焦点
- 非遗 | 高校留学生走进安徽文旅扶点-环球通讯
- 今日快看!FPS游戏《无畏契约》国服今日终测 删档充值返利
- 环球最新:黑河联通多措并举提升廉洁文化教育质效
- 每日视点!语文名师点评AI高考作文:百度搜索AI伙伴优于New Bing、ChatGPT
- 国家金融监督管理总局李云泽:正式启动上海再保险“国际板”-环球快看点
- 全球报道:重庆油菜喜获丰收 总产量实现连续16年增长
- 冒险游戏《血清》发布实机视频 支持简体中文 四人联机
- 全力保障高考通信畅通,重庆电信在行动!_环球速读
- 《无人深空》发布季节性更新“奇点”预告视频 现已正式上线-环球微速讯
- 世界殿堂级名团重返中国舞台 玛莎·葛兰姆现代舞团尽展风采 观速讯
- 上海移动获得DC-Tech数据中心智能建造最高等级认证 当前快讯
- 戴尔电脑开机后蓝屏重启应该怎么应对
- 电视剧《照亮你》在都市类型中铺展新的叙事面向 世界要闻
- 黑白琴键抒写长三角风情 全球新要闻
- 上海世纪出版、米哈游、东方明珠新媒体上榜
- 电脑提示vcomp140.dll文件丢失的解决方法|环球新要闻
- 世界今热点:切实保护金融消费者合法权益
- 全球快报:电脑蓝屏nv1ddmkm.sys怎么办
- “拆楼”式装修必须叫停
- 世界今日讯!李云泽:下好风险前瞻防控先手棋,以更加主动态度应对风险隐患
- 湖北馆展品超5000件:五大“重器”显实力 五类“非遗”溢楚风_今日看点
- 国家金融监督管理总局李云泽:监管体制改革是金融改革的重要一环 天天快资讯
- 公安部交管局公布近期三轮车肇事肇祸典型交通事故案例
- 网传重组人生长激素进浙江集采 长春高新连夜召开电话会回应
- 当前通讯!传记文学《灵魂的旋律:我的父亲刘炽》:再现作曲家刘炽艺术人生
- 全球微头条丨欢乐家的椰子“野心”:去年椰子汁饮料营收超8亿,今年加码投资
- 腾势D9车型5月销量11005辆,环比增长约9.6%
- 两部门:举办全国和美乡村篮球大赛(村BA)
- 最新资讯:Win10 watchdog.sys蓝屏该采取什么解决方法
- 世界视讯!《神仙道3》神阙风物志第五章详细通关攻略
- 全球净零技术制造竞争全面展开 时讯
- 海口江东新区盛泰仕家安居房项目预计10月底全面封顶
- 刀具等特殊商品退货难邮寄,如何解?
- 如何解决提示cnbbr332.dll丢失报错问题
- 【小康头条】高考第二天,这些话想对你说......_世界微速讯
- 全球新消息丨国家医保局:1-4月基本医疗保险基金总收入11403.13亿元,同比增长8.1%
- 携程集团发布2023Q1财报:净营收92亿元 同比增长124%
- 茶园里开“茶话会” 专家齐献“金点子” 当前视讯
- 《崩坏星穹铁道》访问筛查拍照位置大全
- 树立安全“红线”意识 筑牢安全生产防线_天天快资讯
- 每日热文:安徽省休宁县市场监管局开展中高考考点周边药械安全专项检查
- 医院只允许有合作的民营救护车辆进入?调查结果来了
- 海口江东新区快速通道项目启动首联钢梁吊装作业-环球速看料
- 世界要闻:加拿大野火持续蔓延 美东多地被浓烟笼罩
- 评论 | 传统中国画教育的时代价值挖掘|世界最新