英国一位物理学用量子技术远程控制实验室设备 制造出了第五种物质状态

2020-05-26 09:42:27来源:IT之家  

北京时间5月26日消息,据国外媒体报道,在新冠病毒疫情隔离期间,英国一位物理学家在自家客厅利用量子技术远程控制实验室设备,制造出了第五种物质状态。

Amruta Gadge博士是英国苏塞克斯大学数学与物理科学学院的物理学家,她制造的是名为“玻色-爱因斯坦凝聚”(Bose-Einstein Condensate,简称BEC)的物质状态。这是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态。在这种状态下,极低温的原子聚集在一起,表现得如同一个单一的实体。

在疫情隔离期间,Gadge博士只能在离实验室约三公里外的自家起居室里工作,但她还是用电脑控制激光和无线电波,创造出了玻色-爱因斯坦凝聚。剑桥大学量子系的研究人员认为,这是第一次有人通过远程操作,在之前从未制造过玻色-爱因斯坦凝聚的实验室里制造出了这种物质状态。

这一成就或许能为使用计算机远程操作量子技术提供启发,比如在太空或水下等难以接近的环境中。利用量子物理中鬼魅般的超距效应,量子技术可以极大地加快信息处理的速度,从而开发出地球上最强大的计算机。

“我们都非常兴奋,因为我们可以在隔离期间,以及未来任何可能的隔离情况下,采用远程方式继续进行实验,”苏塞克斯大学实验物理学教授彼得·克鲁格(Peter Kruger)说,“增强远程实验室控制的能力,对于研究在太空、地下、潜艇以及极端天气下难以接近的环境中操作量子技术而言,有着重大意义。”

玻色-爱因斯坦凝聚是继固态、液态、气态和等离子态(当气体中的原子电离时产生的)之后的第五种物质状态。20世纪20年代中期,阿尔伯特·爱因斯坦和印度物理学家萨特延德拉·纳特·玻色(Satyendra Nath Bose)预言,量子力学可以迫使大量粒子表现出单个粒子的行为,这开启了对所谓“第五物质”的研究。

▲ 这张图像证实了玻色-爱因斯坦凝聚的成功制造。从左到右可以看到,当原子冷却到接近绝对零度时,其行为就像一个单一实体

然而,直到1995年6月,科学家们通过在170nK(1.7×10^-7K)的低温下冷却由大约2000个铷-87原子组成的稀薄气体,才制造出了世界上第一个玻色-爱因斯坦凝聚。

玻色-爱因斯坦凝聚通常是一团由成千上万个铷原子组成的云,这些气态原子冷却至接近绝对零度,即原子停止运动的温度。然而,就在绝对零度之上,原子具有一种不同寻常的性质,它们会结合成一个单一的量子物体,也就是几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态,并可以感知非常弱的磁场。

苏塞克斯大学的量子系统与设备研究小组就在布莱顿郊外进行实验,目的是用玻色-爱因斯坦凝聚作为磁传感器。“我们使用多个精心定时的激光和无线电波冷却步骤,在超低温条件下制备出铷原子气体,”克鲁格教授说,“这需要用计算机对激光、磁铁和微芯片中的电流进行精确控制,同时也需要对实验室的环境条件进行警觉的监控,因为没有人能够亲自到现场进行检查。”

就在隔离措施规定可以居家工作的人应该待在家里之前,研究人员设置了一个二维磁光阱,这是一套看起来很奇怪的金属装置,利用激光和磁铁来产生捕获的原子。Gadge博士通过远程访问实验室的计算机,在家中运行序列,从而进行复杂的计算。

“研究小组一直在观察隔离和在家工作的情况,因此我们已经有好几个星期无法进入实验室了,”Gadge博士说,“过程要比我在实验室的时候慢得多,因为这个实验不稳定,每次运行之间我都需要10到15分钟的冷却时间。”

“这显然没有手动操作的效率高,而且也更加费力,因为我无法像在实验室工作那样进行系统扫描或修复不稳定性,”她补充道,“但我们决心继续研究,我们也一直在探索远程进行实验的新方法。”

被捕获的低温量子气体在受控状态下,可以创建极其精确的传感器,用于探测和研究新的材料、几何形状和设备。目前研究小组正在对传感器进行进一步开发,以应用于电动汽车电池、触摸屏、太阳能电池以及脑成像等医学领域。

在过去的9个月里,该研究团队还一直致力于建立第二个实验室,以稳定地制造出玻色-爱因斯坦凝聚。这将作为开发新型磁显微镜和其他量子传感器等更大项目的一部分。

苏塞克斯大学是英国国家量子计算网络的一部分。该网络成立于2013年,目标是将第一台通用的量子计算机商业化。早在2017年,剑桥大学就在《科学进展》(Science Advances)杂志上发表了建造量子计算机的蓝图。2019年10月,谷歌公司声称已经取得了量子计算的突破,其开发的处理器可以在几分钟内完成传统计算机需要1万年才能完成的计算。然而,谷歌在量子技术研究领域的主要竞争对手,包括IBM等,对谷歌声称已经实现的所谓“量子霸权”提出了异议。所谓量子霸权,又称量子优越性,是指量子计算机能够解决古典计算机实际上无法解决的问题。

IBM也在研究自己的量子计算机,该公司认为,谷歌的“Sycamore”量子计算机所完成的随机数生成任务,经典计算机理论上在经过1万年的处理后也是可以完成的。IBM研究人员在一篇博客文章中写道,由于约翰•普莱斯基尔(John Preskill)在2012年提出的“量子霸权”一词的原意是描述量子计算机可以做到经典计算机不能做到的事情,因此谷歌还没有达到这个门槛。

苏塞克斯量子技术中心主任温弗里德·亨辛格(Winfried Hensinger)教授当时在接受采访时表示:“他们(谷歌)选择的问题是一个完全没有实际用途的问题,下一步将是解决有用的问题。”

量子计算机的关键在于它不仅能在“开”或“关”的回路基础上工作,而且还能同时处于“开”和“关”的状态。这听起来很奇怪,但却是由量子力学的规律决定的。量子力学决定了组成原子的粒子的行为。在这个微观尺度上,物质的行为方式在我们所处宇宙的宏观尺度上是不可能的。

量子力学允许这些极小的粒子以多种状态存在,这就是所谓的“叠加”,直到它们被观察或被干扰。一个很好的类比是一枚在空中旋转的硬币,在它落地之前,你不能说它是“正”还是“反”。

现代计算的核心是二进制代码,经典计算机几十年来都以此为基础。经典计算机的“比特”由0和1组成,而量子计算机的“量子位”既可以取0或1的值,还可以同时取0和1的值。对量子计算机而言,其发展的主要障碍之一是如何证明它们可以打败经典计算机。谷歌、IBM和英特尔等公司都在努力实现这一目标。

玻色-爱因斯坦凝聚态(BEC)被称为物质的第五态,而前四种分别是固态、液态、气态和等离子态。这种状态是在接近绝对零度的低温下形成的,而且只在表现得像玻色子的原子中形成。

玻色子是两种基本粒子中的一种。当玻色子原子冷却形成凝聚态时,它们会失去自己的特性,其行为就像一个巨大的超级原子集团,有点像在激光束中变得难以分辨的光子。1995年6月5日,美国科罗拉多大学博尔德分校的埃里克·康奈尔和卡尔·威曼通过实验制造出了第一个玻色-爱因斯坦凝聚。四个月后,麻省理工学院的沃尔夫冈·克特勒使用钠-23独立获得了玻色-爱因斯坦凝聚。2001年,康奈尔、威曼和克特勒分享了诺贝尔物理学奖。

标签: 第五种物质状态

相关阅读

相关词

推荐阅读